Research Article

Synthesis and Characterization of Some Di Five and Six Heterocyclic Rings

Ahmed Ahmed^{*}, Muhanned Mahmoud^{**} and Emad Yousif^{*}

* Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.

**Department of Chemistry, College of Education, Ibn Al- Haitham, Baghdad University, Baghdad, Iraq.

ABSTRACT

The synthesis of phthalazine, pyridazindione, pyrazole and pyrazol-5-one compounds (4-8) starting from p-phenylenediamine by the reaction of compound (3) with phthalic anhydride, maleic anhydride, succinic anhydride, acetyl acetone and ethyl acetoacetate in presence of acetic acid as solvent and catalyst in compounds (4-6) and catalyst in compounds (7 and 8). The synthesized compounds were characterized by FTIR spectrum and some of them were characterized by CHNS, 1 H-NMR and 1 3C-NMR spectral data.

Keywords: phthalazine, pyridazindione, pyrazole and pyrazol-5-one.

INTRODUCTION

Nitrogen heterocycles containing the phthalazine pyrazole, moieties are important targets in synthetic and medicinal chemistry because this fragment is a key moiety in numerous biologically active compounds¹⁻³, because they show some pharmacological and biological activities⁴⁻⁶. In particular, they are used as antitumor7-8, antibacterial and antifungal, antiviral, antiphrastic, antitubercular and insecticidal agents⁹⁻¹².

Experimental

Melting points were determined on Gallenkamp melting point apparatus and were uncorrected, elemental analysis (CHNS) were carried out using a Perkin-Elmer model 2400 instrument, FTIR measurements were recorded on Shimadzu model FTIR-8400S. ¹H-NMR and ¹³C-NMR spectra were obtained with Bruker spectrophotometer model ultra shield at 300 MHz in DMSO-d₆ solution with the TMS as internal standard.

Synthesis of N,N-Bis-(carbethoxy methyl)-p-phenylenediamine²

Ethyl chloro acetate (22.64 g., 0.1848 mol.)was added drop wise to a stirred cold solution of *p*-phenylenediamine (10 g., 0.0924 mol.), after that anhydrous potassium carbonate (25.54 g., 0.1848

mol.) in absolute ethanol (75 ml.) was added. The reaction mixture was refluxed for (12 hours), the resulting precipitate from KCl was filtered, the solvent was evaporated and the crude product was obtained as a gum, yield (76%). FTIR: 3381 (NH), 3375 (NH₂), 2923 (CH), 1733 (C=O). ¹H-NMR (DMSO-d₆) δ : 1.080-1.297 (t, 3H, CH₃), 3.771 (s, 1H, NH) (exchangeable with D₂O), 4.261 (s, 2H, CH₂), 4.878-4.963 (q, 2H, CH₂) for ethyl group , 6.484 (s, 5H, benzene ring). ¹³C-NMR (DMSO-d₆) δ : 12.30 (2C, CH₃), 48.89 (2C, CH₂-NH), 63.07 (2C, CH₂-CH₃), 120.76 (4C, benzene ring), 142.45 (2C, CNH benzene ring), 172.60 (2C, C=O).

Synthesis of N,N'-Bis-(acetic hydrazide)p-phenylenediamine²

Compound (3) was synthesized by addition of hydrazine hydrate (10 ml.) to (5 g., 0.0178 mol.) of compound (2), the mixture was refluxed for (2 hours). Then (25 ml.) of ethanol was added and refluxed for (1 hour). After cooling, the product was filtered off and recrystallized from ethanol, m.p. (220-222) °C, yield (85%). FTIR: 3346-3300 (NH₂), 1658,1608 (C=O) amid I and II. ¹³C-NMR (DMSO-d₆) δ: 60.13 (2C, CH₂), 119.87 (4C, benzene ring), 130.54 (2C, C=NH), 167.26 (2C, C=O).

Synthesis of N,N'-Bis-[1-(acetyl)-2-hydrophthalazin-3,8-dione]-*p*-phenylenediamine (4), N,N'-Bis-[1-acetyl-2-hydropyridazin-3,6-dione]-*p*-phenylenediamine (5), N,N'-Bis-[1-acetyl-2,4,5-trihydropyridazin-3,6-dione]-*p*-phenylenediamine (6) General procedure

Compound (3) (1 g., 0.0039 mol.), was mixed with appropriate acid anhydride, in acetic acid (5 ml.), the mixture was refluxed for (7 hours) then cooled and added to crushed ice. The precipitate was filtered off, washed with water to give the final product. The physical properties for the synthesized compounds are showed in Table (1).

Table 1: Physical data for compounds (4-6)

,	•	
Comp.		
No.	C	%
(4)	170-171dec.	50
(5)	133-135	60
(6)	239-240	65

Table 2: FTIR data of compounds(4-6)

	Comp. No.	υN–H str.	υC–H Aromatic	υC=O str. Pyridazine	υC=O Amide	C=C str.	N–H Bending
ľ	(4)	3199	3032 - 3024	1708	1685	1589	1516
Ī	(5)	3215	3045	1710	1610	1589	1519
ſ	(6)	3264	3040	1701	1674	1592	1519

 1 H-NMR of compound (6) (DMSO-d₆) δ: 2.798-2.897 (t, 2H, CH₂ pyridazine ring), 3.701 (s, 2H, CH₂), 3.908 (s, 1H, NH) (exchangeable with D₂O), 7.381 (s, 4H, benzene ring), 9.244 (s, 1H, NH pyridazine ring) (exchangeable with D₂O).

Synthesis of N,N'-Bis-[1-(acetyl)-5-methyl-pyrazol-5-one]-p-phenylenedi-amine (7), N,N'-Bis-[1-(acetyl)-3,5-dimethylpyrazole]-p-phenylenediamine (8) General procedure

Compound (3) (1 g., 0.0039 mole.) was treated with (ethyl acetoacetate or acetyl acetone) respectively, acetic acid (0.5 ml.) in absolute ethanol (10 ml.) was heated under reflux for (7 hours). The reaction mixture was cooled and the formed precipitate was filtered off to give the final product. The physical properties for the synthesized compounds are showed in Table (3).

Table 3: Physical data of compounds7.8

compounds, ,c							
Comp.	m.p.	Yield					
No.	°C	%					
(7)	197-199	52					
(8)	112-114	59					

Table 4: FTIR data of compounds^{7,8}

Comp. No.	υN–H str.	υC–H Aromatic	υC–H Alephatic	υC=O Amide	υC=N str.	C=C str.	N⁻H bending	Other bands
(7)	3292	3076-3066	2981-2930	1683	1610	1577	1521	C=O Pyrazole 1734
(8)	3329	3032 -3024	2981 - 2926	1662	1658 overlape	1610	1516	-

 1 H-NMR of compound (8), (DMSO-d₆) δ: 1.391 (s, 3H, CH₃), the singlet signal at δ 2.410 (s, 2H, CH₂ pyrazolone ring), the

singlet signal at 3.572 (s, 2H, CH₂), 4.066 (s, 1H, NH), 6.073 (s,4H, benzene ring).

Table 5: Elemental analysis for some of the synthesized compounds

Comp. No.	Elemental analysis Calc. (Found)				
Comp. No.	%C	%H	%N	%S	
(3)	47.61 (47.33)	6.39 (6.01)	33.31 (33.49)	_	
(6)	51.92 (52.03)	4.84 (4.76)	20.19 (20.15)		
(7)	63.14 (62.92)	6.36 (5.97)	22.09 (22.15)	1 1	

RESULTS AND DISCUSSION

To synthesis of phthalazine and pyridazindione derivatives (4), (5) and (6), Scheme (1).

$$\begin{array}{c} \text{H}_2\text{N} & \begin{array}{c} & \text{ethy1 chloro acetate} \\ & & \end{array} \\ & \begin{array}{c} \text{EtOOCH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{COOEt} \\ \end{array} \\ & \begin{array}{c} \text{In drazine hydrate} \\ \text{H}_2\text{NHNOCH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{CONHNH}_2 \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{CONHNH}_2 \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ & \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{HN} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{NH} - \text{CH}_2\text{C} - \text{NH} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{NH} - \text{CH}_2\text{C} - \text{NH} - \text{CH}_2\text{C} - \text{NH} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{NH} - \text{CH}_2\text{C} - \text{NH} - \text{CH}_2\text{C} - \text{NH} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{NH} - \text{CH}_2\text{C} - \text{NH} - \text{CH}_2\text{C} - \text{NH} \\ \end{array} \\ \begin{array}{c} \text{NH} - \text{CH}_2\text{C} - \text{NH} \\ \end{array}$$

i) phthalic anhydride ii) maleic anhydride iii) secinic anhydride

Scheme (1) Synthesis rout of compounds (4-6)

Compounds (4), (5) and (6) were synthesized from the reaction of compound [3] with phthalic anhydride, maleic anhydride and succinic anhydride respectively, in the presence of acetic acid as a solvent and catalyst. The suggested mechanism for the synthesis of the compound (6) is shown in scheme (2), the synthesis of compounds (4) and (5) were followed the same mechanism as in

compound (6). In the first step of the reaction, a protonation process takes place by the acid, followed by a nucleophilic attack by the hydrazide on the carbon atom bearing the positive charge. Losing a proton and rearrangement lead to cyclization with losing a water molecule. The suggested mechanism of the reaction is shown in Scheme (2).

Scheme (2) suggested mechanism for synthesis of compound (6)

Compounds [7] and [8] were synthesized from the reaction of compound [64] with acetyl acetone and ethyl aceto acetate, respectively in the presence of acetic acid

using absolute ethanol as a solvent, Scheme (3).

Scheme (3) Synthesis rout of compounds (7,8)

iv) ethyl acetoacetate v) acetyl acetone

The suggested mechanism of the reaction is shown in Scheme (4).

Ar-NHNH₂ + CH₃ - C-CH₂ - C-CH₃ P.T. Ar-NH-NH-C-CH₂ - C-CH₃ 1) P.T. 2) - H₂O Ar-HN Ar-Ni N-C-CH₂ - C-CH₃ (3)

The same steps were carried out for the second group
$$H_3$$
C H_3 C $H_$

Scheme (4) suggested mechanism for synthesis of compound (8)

REFERENCES

- 1. El-hashash M, Soliman A and Elshamy I. Synthesis and antimicrobial evaluation of some annelated phthalazine derivatives and acyclo C-nucleosides from 1-chloro-4-(2,4,6-trimethylphenyl)phthalazine precursor. Turk J Chem. 2012;36: 347–366.
- Elguero J, Katritzky A, Rees C and Scriven E., "Comprehensive Heterocyclic Chemistry II", Elsevier: Oxford, 1996; Vol. 3: 1– 75
- Genin M, Biles C, Keiser B, Poppe S, Swaney S, Tarpley W, Yagi Y and Romero D. Novel 1,5diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3- and 4-substituted derivatives. J Med Chem. 2000; 43:1034-1040.
- 4. Sharshira E and Hamada N. Synthesis and Antimicrobial

- Evaluation of Some Pyrazole Derivatives, Molecules. 2012;17: 4962-4971.
- Jain R and Vederas J., Structural variations in keto-glutamines for improved inhibition against hepatitis A virus 3C proteinase, Bioorg Med Chem Lett. 2004;14: 3655-3658.
- 6. Al'-Assar F., Zelenin K. Lesiovskaya E, Bezhan I and Chakchir **Synthesis** В. and Pharmacological Activity of 1-Hydroxy-, 1-Amino-, and Hydrazino-Substituted 2,3-Dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8diones and 2,3-Dihydro-1Hpyrazolo[1,2-b]phthalazine-5,10diones. Pharm Chem J. 2002;36: 598-603.
- 7. Taylor E, Patel H and Kumar H. Synthesis of pyrazolo 3,4-dpyrimidine analogues of the potent agent N-4-2-2-amino-43H-oxo-7H-pyrrolo2,3-dpyrimidin-5-yl ethylbenzoyl-L-glutamic acid, Tetrahedron. 1992;48:8089–8100.

- Cardia M, Distinto E, Maccioni E and Delogu A. Synthesis and Biological Activity Evaluation of Differently Substituted 1,4-Dioxo-3,4-dihydrophthalazine-2(1H)-carboxamides and –carbothioamides. J Heterocycl. Chem. 2003;40:1011-1015.
- Abdel-Rahman A, Abdel-Megied A, Hawata M, Kasem E and Shabaan M. Synthesis and antimicrobial of some chalcones and their derived pyrazoles, pyrazolines, isoxzolines and 5,6-dihydropyrimidine-2-(1H)thiones, Monatsh. Chem. 2007; 138:889–897.
- 10. Sharshira E and Hamada N. Synthesis and in vitro antimicrobial

- activity of some pyrazolyl-1-carboxamide derivatives, Molecules. 2011;16:7736–7745.
- 11. Rashad A, Hegab M, Abdel-Megeid R, Micky J and Abdel-Megeid F. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg Med Chem. 2008;16:7102–7106.
- 12. Kalirajan R, Sivakumar S and Jubie S, Gowramma B and Suresh B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int J Chem Tech Res. 2009;1:27–34.