Rapid regeneration of Carbonyl compounds from Oximes

Under Mild Lewis acid conditions using NaI/ BF₃.Et₂O

Madala Subramanyam¹², Koya Prabhakara Rao², Ravi Varala³* and M.V.B. Rao⁴

¹Department of Chemistry, JVR Govt. Degree & PG College, Sattupaly, Khammam-507303, Telengana, India.
²Department of Chemistry, Vignan University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India.
³Department of Chemistry, IIIT Basara, Mudhole, Adilabad-504107, Telengana, India.
⁴Department of Chemistry, Krishna University, Machilipatnam, Krishna-521001, Andhra Pradesh, India.

ABSTRACT

A simple and efficient protocol for the regeneration of carbonyl compounds was demonstrated under mild Lewis acid conditions using NaI/ BF₃.Et₂O. Varieties of oximes were synthesized (1-19) and converted to their corresponding carbonyls with excellent yields, selectivity, and highly reduced reaction times with minimized side products. A systematic study of the conditions of experimentation was resulted to propose a possible mechanism of the progress of the reaction.

Keywords: Oximes, Sodium iodide/ Borontrifluoride-etherate, Carbonyl compounds.

INTRODUCTION

Oximes of carbonyl compounds are important, because they are frequently used to protect carbonyl compounds in the course of total synthesis and assumed added importance after the discovery of Barton reaction¹ in which the oximes are produced at non-activated hydrocarbon sites. The generation of carbonyl compounds from oximes represents a potential route for the synthesis of ketones and aldehydes². Therefore, there has been a continuous interest in the development of methods for the efficient regeneration of carbonyls from their parent nitrogen derivatives and an efficient catalytic cleavage would therefore be considerable benefit.

A variety of methods have been developed for the conversion of oximes into their corresponding carbonyl compounds. In which, mostly consists of oxidative³, reductive⁴, acid catalyzed⁵, that requires strong acids and co-solvent in relation to the stability of oximes. Recent reports also identified methods including clay supported⁶ and microwave assisted⁷. Although literature enumerates plethora of methods which involve reagents that are often hazardous or very toxic, expensive or not readily available⁸.

Careful scrutiny of the methods reveals that most of these methods represent a different balance of yields, reflux temperatures, longer reaction times, toxicity, expense, selectivity and convenience. Consequently, there is a scope for further development of milder reaction conditions and with better yields. Herein, we studied the importance of BF₃.Et₂O in combination with NaI for the rapid conversion of oximes into their corresponding carbonyl compounds with excellent yields, selectivity and short reaction times.

RESULTS AND DISCUSSION

In the course of our studies on the development of Lewis acid catalyzed organic transformation⁹, we wish to report in this communication a new catalyst for the direct conversion of oximes into aldehydes and ketones under mild Lewis acid conditions using boron trifluoride-etherate and sodium iodide. The versatility of the combination of boron trifluoride etherate/halide ion has been well exemplified in organic chemistry in which, most methods focused on mild and
regioselective cleavage of ether10 conversion of benzylic, allylic and tertiary alcohols to halides12, degeneration of sulfoxides to sulfides12, a non aqueous conversion of acetals and ketals to the carbonyl compounds13, and selective cleavage of benzylic ethers14 were well studied in the literature and no one has studied the importance of this reagent towards the above mentioned purpose. Recent reports also studied the utility of this reagent for the efficient selective reduction of aromatic azides to amines15.

An easy release of the BF\textsubscript{3} component from this complex and its further coordinating with either oxygen atom or other heteroatom bringing about specific transformations has also been well specified in organic reactions12. We have developed a convenient method for the deoximation of aldoximes and ketoximes to their corresponding carbonyl compounds using BF\textsubscript{3}.Et\textsubscript{2}O together with NaI. The utility of this reagent for the regeneration of carbonyls was well studied and a variety of oximes were synthesized in terms to study the selectivity as well as to monitor the reaction yields.

Scheme 1: Deoximization of Oximes into Carbonyl compounds

In the first step of the analysis, 3-methoxy-4-hydroxy benzaldoxime \textit{1} was treated with NaI/BF\textsubscript{3}.Et\textsubscript{2}O in acetonitrile for 30 min. at ambient temperature. A complete conversion (monitored by TLC) resulted in the formation 3-methoxy-4-hydroxy benzaldehyde \textit{1a} with 90\% yield (isolated yields) and there was no evidence of the formation of side product. Similarly, varieties of oximes (2a-19a) were prepared using standard oximation method by the reaction of carbonyl compounds with hydroxylamine hydrochloride. Resulted oximes were examined with the treatment of reagent and were converted into the respective carbonyl compounds in 50-92\% yields.

A close monitoring the reaction conditions and the products reveals that electron donating groups on the phenyl ring resulting in slight lowering the yields and this is due to decrease the electrophilic character of the carbonyl carbon. Rate of conversion of aldoximes is faster compare to that of ketoximes. This is due to the low reactivity of ketoximes over aldoximes. Increase in the electrophilic character might improve the formation of complex with -OBF\textsubscript{3} further resulting in improves the reaction yields.

In terms to study the selectivity, we used a wide variety of oximes in which substrate \textit{6} an \textit{α}, \textit{β}-unsaturated aldehyde was treated with the reagent resulting in the formation of \textit{6a} in high yield. In the similar fashion substrate \textit{7} undergo treatment with reagent resulting in the formation of \textit{7a} with moderate yield and excellent selectively. It indicates that oximes can be selectively deprotected in the presence of other functional groups such as –OMe, O-allyl, OBn. In all these cases –OBF\textsubscript{3}, act as an excellent leaving group and iodide ion as best nucleophile resulting in the conversion of oximes into carbonyl compounds. The experimental optimization of reaction and their yields were summarized in Table-1. In all the cases the reaction proceeds in high yields at room temperature within the short reaction times (0.4-2 h).

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{Scheme_1.png}
\caption{Deoximization of Oximes into Carbonyl compounds}
\end{figure}
<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product<sup>a</sup> (1a-12a)</th>
<th>Time (min)</th>
<th>Yield<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeO<sub>2</sub>H<sub>2</sub>NHMeO<sub>2</sub>H</td>
<td>MeO<sub>2</sub>H<sub>2</sub>CONHNMeO<sub>2</sub>H</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>OHN</td>
<td>OHO</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>H<sub>2</sub>NH</td>
<td>HOH</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>H<sub>2</sub>NH</td>
<td>HOH</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>MeO<sub>2</sub>H<sub>2</sub>NH</td>
<td>MeO<sub>2</sub>H<sub>2</sub>CONHMeO<sub>2</sub>H</td>
<td>80</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>HOH</td>
<td>HOH</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>HOH</td>
<td>HOH</td>
<td>55</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>HOH</td>
<td>HOH</td>
<td>50</td>
<td>87</td>
</tr>
<tr>
<td>9</td>
<td>MeO<sub>2</sub>H<sub>2</sub>NHOMe</td>
<td>MeO<sub>2</sub>H<sub>2</sub>CONHMeOMe</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>MeO<sub>2</sub>H<sub>2</sub>NHBnO</td>
<td>MeO<sub>2</sub>H<sub>2</sub>CONHBnO</td>
<td>120</td>
<td>84</td>
</tr>
<tr>
<td>Entry</td>
<td>Substrate</td>
<td>Producta (1a-12a)</td>
<td>Time (min)</td>
<td>Yieldb (%)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>H$_2$N=O</td>
<td>55</td>
<td>78</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>H$_2$N=O</td>
<td>45</td>
<td>86</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>H$_2$N=O</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>H$_2$N=O</td>
<td>45</td>
<td>92</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>H$_2$N=O</td>
<td>55</td>
<td>84</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>H$_2$N=O</td>
<td>90</td>
<td>75</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>H$_2$N=O</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>H$_2$N=O</td>
<td>45</td>
<td>87</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>H$_2$N=O</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

a All the compounds were characterized by using IR, NMR, Mass and comparing the authentic samples. b Isolated yields
In view of the above-observed selectivity, mildness, less reaction times, it is believed that the scope and generality of the reaction has considerably improved with respect to deprotection of various oximes.

A systematic study of the conditions of experimentation was studied and a proposed mechanism, which determines the progress of the reaction, was depicted in Scheme 2. The reaction of carbonyl compounds with sodium iodide considerably progress under short reaction times. Several oximes were prepared by reported literature and further treatment with reagents yielded corresponding carbonyls in excellent yields and selectivity (Table 1).

In conclusion, a simple and efficient protocol for the regeneration of carbonyl compounds using NaI/BF₃·Et₂O has been demonstrated. The advantage of this new method is mild reaction conditions, highly reduced reaction times, and minimization of side products, simple experimental procedure and excellent yields. These advantages are very useful in complex multiple synthesis. The present method consults a useful alternative to the available procedures.

Spectral data for selected compounds

3-methoxy-4-hydroxy benzaldoxime (1): IR (KBr): νmax 3451 (−OH), 2941, 1642, 1598, 1566, 948, 970 cm⁻¹, ¹H NMR (CDCl₃, 200 MHz): δ 8.00 (1H, s, CH=N-OH), 7.20 (1H, dd, J = 8.0, 2.0 Hz, H-6), 6.95 (1H, d, J = 2.0 Hz, H-2), 6.82 (1H, d, J = 8.0 Hz, H-5), 5.70 (1H, s, Ar-OH), 3.89 (3H, s, Ar-OMe), EIMS: 168 (M⁺+H). 3-methoxy-4-hydroxy benzaldehyde (1a): IR (KBr): νmax 3480 (Ar-OH), 2941, 1718, 1606, 1150 cm⁻¹, ¹H NMR (CDCl₃, 200 MHz): δ 9.81 (1H, s, -CH=O), 7.42 (1H, dd, J = 7.9, 2.0 Hz, H-6), 7.39 (1H, d, J = 2.0 Hz, H-2), 7.05 (1H, d, J = 7.9 Hz, H-5), 6.39 (1H, s, Ar-OH), 3.98 (3H, s, Ar-OMe), EIMS: 153 (M⁺+H).

3-hydroxy-4-methoxy cinnamaldehyde (6a): IR (KBr): νmax 3462, 2984, 1587, 1156 cm⁻¹, ¹H NMR (CDCl₃, 200 MHz): δ 8.25 (1H, s, -CHO) 7.25 (1H, d, J = 16.0 Hz, -CH=CH), 6.98 (1H, dd, J = 8.0, 1.5 Hz, H-6), 6.80 (1H, d, J = 1.5 Hz, H-2), 6.75 (1H, d, J = 8.0 Hz, H-5), 6.28 (1H, d, J = 16.0 Hz, -CH=CH), 5.60 (1H, s, -OH, Ar-OH), 3.82 (3H, s, Ar-OMe), EIMS: 194 (M⁺+H).

2-O-allyl benzaldoxime (7): IR (KBr): νmax 3425, 2895, 1597, 1065, 988 cm⁻¹, ¹H NMR (CDCl₃, 200 MHz): δ 8.10 (1H, s, -CH=N-OH), 7.14-7.35 (4H, m, Ar-H), 5.72-5.74 (1H, m, -CHO).
CH=CH$_2$), 5.23-5.35 (2H, m, -CH=CH$_2$), 4.49 (2H, t, $J = 12.5, 6.0$ Hz, -OCH$_3$), EIMS: 178 (M$^+$+H).

2-O-allyl benzaldehyde (7a): IR (KBr): ν_{max} 2895, 1728, 1597, 1065 cm$^{-1}$, 1H NMR (CDCl$_3$, 200 MHz): δ 10.12 (1H, s, -CH=O), 7.45 (1H, dd, $J = 8.0, 2.0$ Hz, H-6), 7.23-7.25 (1H, m, H-4), 6.75-6.80 (1H, m, H-5), 6.65 (1H, dd, $J = 7.8, 2.0$ Hz, H-3), 5.75-5.80 (1H, m, -CH=CH$_2$), 4.65 (2H, t, $J = 12.0, 6.0$ Hz, -OCH$_3$), EIMS: 163 (M$^+$+H).

3-methoxy-4-O-benzyl benzaldoxime (10): IR (KBr): ν_{max} 3451(b-OH), 2941, 1642, 1598, 1156 cm$^{-1}$, 1H NMR (CDCl$_3$, 200 MHz) δ 8.0 (1H, s, -CH=N), 7.40-7.50 (5H, m, -bPh), 7.42 (1H, d, $J = 7.9, 2.0$ Hz, H-5), 5.70 (1H, s, Ar-CH$_3$), 3.98 (3H, s, Ar-OCH$_3$), EIMS: 258 (M$^+$+H).

3,4-di chloro benzaldoxime (14): IR (KBr): ν_{max} 3480, 2941, 1642, 1606, 968 cm$^{-1}$, 1H NMR (CDCl$_3$, 200 MHz): δ 8.20 (1H, s, -CH=N=O), 7.60 (1H, d, $J = 2.0$ Hz, H-2), 7.42 (1H, d, $J = 8.0, 2.0$ Hz, H-6), 7.35 (1H, d, $J = 8.0$ Hz, H-5), EIMS: 191 (M$^+$+H).

2-Octanone oxime (17): IR (KBr): ν_{max} 3415, 2929, 1325, 978 cm$^{-1}$, 1H NMR (CDCl$_3$, 200 MHz): δ 8.90 (1H, s, -C=N-OH), 2.20 (2H, t, $J = 14.0, 8.1$ Hz, H-3), 1.86 (3H, s, -CH$_3$-H-1), 1.20-1.60 (8H, m, 4 x -CH$_2$, H-4, 5, 6, 7), 0.89 (3H, t, $J = 12.0, 6.6$ Hz, H-8), EIMS: 144 (M$^+$+H).

2-Octanone (17a): IR (KBr): ν_{max} 3425, 2994, 1715, 1298, 865 cm$^{-1}$, 1H NMR (CDCl$_3$, 200 MHz): δ 2.10 (2H, t, $J = 14.0, 8.1$ Hz, H-3), 2.02 (3H, s, -CH$_3$-H-1), 1.08-1.15 (8H, m, 4 x -CH$_2$, H-4,5,6,7), 0.79 (3H, t, $J = 12.0, 6.6$ Hz, H-8), EIMS: 128 (M$^+$+H).

ACKNOWLEDGEMENTS
Authors thank to DICT for the continuous support and SPK and KSB thanks to CSIR, India. Dr. Ravi Varala thanks Prof. Appala Naidu, Director, IIIT Basara for his encouragement.

REFERENCES AND NOTES
16. Experimental Procedure: To a stirred solution of oxime (3 mmol) and NaI (6 mmol) in 15 ml acetonitrile was added BF$_3$.Et$_2$O (6 mmol) in acetonitrile slowly and the resulting mixture was stirred at room temperature under Ar for the specified time as indicated in Table-1. After the disappearance of the starting material as indicated by TLC, the reaction mixture was quenched with ice cold water (20 ml), and added aqueous solution of 15% of sodium thiosulphate (15 mL) and extract with ether (2 x 25 ml). The combined organic layers were washed with bicarbonate (10 mL) and brine (10 mL) dried over anhydrous sodium sulphate. The solvent was evaporated and the residue was purified by column chromatography to obtained pure compound with excellent yield and purity.