Evaluation of the Anti-diabetic Activity of Ethanolic Extract of Citrus maxima Stem Bark

Abdul Muneer MT*, Ashok Shenoy, Karunakar Hegde, Sayed Aamer and AR. Shabaraya
Srinivas College of Pharmacy, Valachil, Mangalore, Karnataka, India.

ABSTRACT
The objective of present study is to evaluate the antidiabetic activity of ethanolic extract of stem bark of Citrus maxima. The term diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A search for appropriate antidiabetic agent has focused on plants used in traditional medicine because natural products maybe a better option than currently used allopathic drugs due to the freedom from side effects. In-vivo hypoglycemic activity of the Citrus maxima fruits and fruit peel have been already documented in the literature. This study was undertaken to evaluate the Antidiabetic activity of Citrus maxima stem bark extract using Alloxan and Streptozotocin induced diabetes in Wistar rats. The results of the present study indicated that Citrus maxima stem bark extract possesses significant antidiabetic activity against streptozotocin and alloxan induced diabetic rats. Stem bark extract of the title plant possesses dose dependant antidiabetic activity when compared with reference standard Glibenclamide. A significant decrease in blood glucose level was observed with the two selected doses, 200mg/kg and 400mg/kg of Citrus maxima stem bark extract hence can be used in diabetes. Antidiabetic activity of Citrus maxima at 400 mg/kg was found to be more effectve than 200 mg/kg.

Key words: Hyperglycemiam, Citrus maxima, Alloxan, Streptozotocin, Glibenclamide.

INTRODUCTION
Diabetes Mellitus is a syndrome of impaired carbohydrate, fat and protein metabolism caused by either lack of insulin secretion or decreased sensitivity of the tissue to insulin. Diabetes is derived from the Greek word meaning syphon, to signify the copious urine production in individuals with this affliction. Diabetes has been recognized for at least 2000 years. Several distinct types of Diabetes Mellitus are caused by a complex interaction of genetics and environmental factors. Several classes of allopathic drugs namely sulphonylureas, biguanides, thiazolidiones, alpha glucosidase inhibitors and semi synthetic insulin are extensively used to control the hyperglycemia. These drugs exert different modes of action to reduce the elevated blood glucose, but none of them were found to be effective in providing complete glycemc control in diabetic patients, moreover these drugs also exert their individual adverse effects such as pregnancy related complications and hypoglycemic episodes when administered to the diabetic patients. Hence there is a need for a antidiabetic drugs/formulation that can provide optimal glycemic control without producing unwanted side effects in the host system. From ancient times, the herbs have been extensively used in the therapy of several diseases. A search for appropriate antidiabetic agent has focused on plants used in traditional medicine because natural products maybe a better option than currently used allopathic drugs due to the freedom from side effects. Many herbal products have been described for the treatment of diabetes mellitus in literature. Moreover, WHO also recommends the inclusion of traditional medicine such as herbs or herbal products in the primary health care level. Although, several plant products are traditionally used to treat the hyperglycemia related complications, still many agents are poorly studied in the literature. Citrus maxima, the pomelo in the Rutaceae (citrus family). It is a medium-
sized tree but the largest of all Citrus species, with large leaves, flowers, and fruits. The species is native to southern China and Malaysia, Taiwan and southernmost Japan, southern India, Malaya, Indonesia, New Guinea and Tahiti, and is now cultivated in many tropical and semi-tropical countries for its large fruits. Like other citrus fruits, pomelos are high in vitamin C. They are generally eaten as a fresh fruit, and they store well. They have long been popular in Asia, especially China, Indonesia, and Thailand, but are increasingly found in specialty markets in the U.S. as well. The juice is also used in various beverages, and the peel may be candied. Traditional medicinal uses of the fruit include treatment of coughs, fevers, and gastrointestinal disorders.

\textit{Citrus maxima} was cited for its various medicinal properties, especially Analgesic, Anti-inflammatory11, Anti-bacterial12,13 Antioxidant16,17 Hepatoprotective14 Antidiabetic19,20, Antitumour19,21 and Antihyperlipidemic20 properties. \textit{In-vivo} hypoglycemic activity of the \textit{Citrus maxima} fruits and fruit peel have been already documented in the literature20. However, studies on Antidiabetic potential of stem bark of the title plant on Alloxan and streptozotocin induced diabetes in rat has not been investigated so far. Hence, the present investigation is undertaken.

\textbf{MATERIALS AND METHODS}

\textbf{Collection and authentication of plant material}

The fresh stem bark of \textit{Citrus maxima} used for the present studies were collected from Malappuram, Kerala, in June 2013. It was authenticated by Mr. Prabu Kumar, Scientist Kottakkal Aryavaidya Sala, Kerala. The Stem bark were dried under shade. The dried Stem bark were pulverized separately into coarse powder by a mechanical grinder and were used for extraction.

\textbf{Preparation of Ethanol Extract}

The powdered material (150 g) was packed in Soxhlet extractor and extracted using ethanol as solvent. The temperature was maintained on an electric heating mantle with thermostat control. Appearance of colourless solvent in the siphon tube was taken as the termination of extraction. The extract was concentrated to syrupy consistency by using rotary flash evaporator. The concentrated extract was then air dried at room temperature, weighed and percentage yield was calculated and stored in air tight container in 2–8°C until used.

\textbf{Experimental animals}

Healthy Wistar albino rats (150–200 g) of either sex were used for the experiment and were procured form the animal house of Srinivas College of Pharmacy, Mangalore. They were maintained under standard conditions (temperature 22 ±2°C, relative humidity 60 ± 5% and 12 h light/dark cycle). The animals were housed in sanitized polypropylene cages containing paddy husk as bedding. They had free access to standard pellet diet and water ad \textit{libitum}. The Institutional Animal Ethics Committee approved the experimental protocol (Approval No. SCP/CPCSEA/P12/F150/2011). All the animals received human care according to the criteria outlined in the "Guide for the Care and Use of Laboratory Animals" prepared by the "National Academy of Sciences" and published by the "National Institute of Health". The animals were acclimatized for at least one week before use.

\textbf{Pharmacological activities}

1. Acute oral toxicity
2. Antidiabetic activity

\textbf{Acute toxicity study}22

Acute oral toxicity study was performed as per OECD-425 guidelines (acute toxic class method). Wister albino rats \textit{(n=6)} of either sex selected by random sampling technique were used for the study. The animals were kept fasting for overnight providing only water, after that the extracts were administered orally at the dose level of 2000mg/kg body weight by intragastric tube and kept under close observation for 24 hrs after administering the extract, and then they were observed daily for 3 days for any change in
general behavior and other physical activities. After 24 h, there were no died animals representing the safety action of all extracts. Method of CPCSEA was adopted for toxicity studies, 1/10th and 1/5th LD50 cut off value of the extract were selected as screening dose.

Anti-diabetic Activity

Streptozotocin induced anti-diabetic activity

Fasting blood glucose was determined after depriving food for 16 h with free access to drinking water. Hyperglycemia was induced by single i.p injection of 100 mg/kg of Alloxan monohydrate in normal saline. After 2 days of Alloxan injection, the hyperglycemic rats (glucose level > 200 mg/dl) were separated and divided into four groups consisting of six rats in each group for the anti-diabetic study. The treatment (p.o) was started from the same day except diabetic control groups. The animals had free access to feed and water ad libitum.

Experimental design

Animals will be randomly divided into 5 groups of 6 each. The different groups will be assigned as follows

- Group I: Vehicle control (normal saline).
- Group II: Diabetic control (Alloxan100mg/Kg).
- Group III: Diabetic + Glibenclamide (1mg/Kg).
- Group IV: Diabetic + Citrus maxima (200mg/kg).
- Group IV: Diabetic + Citrus maxima (400mg/kg).

Oral glucose tolerance test

The oral glucose tolerance test was performed in overnight fasted normal rats. Rats were divided into three groups (each group containing six animals). The first group was kept as vehicle control and received 1 ml of normal saline, the experimental group II was received standard drug Glibenclamide (1 mg/kg) and group III was received test drug (Citrus maxima). After 30 minutes glucose (2 g/kg) was fed to all groups. Blood was withdrawn from the retro-orbital sinus just prior to the glucose administration and at 30, 60, 120, 180 and 240 minutes after glucose loading and glucose levels were measured.

Collection of blood and serum samples

The above treatment was carried out in each group of animals for both models for 21 days. Fasting blood glucose was measured using select simple single touch glucometer. Blood samples were withdrawn under mild anesthesia from retro orbital sinus of the overnight fasted animals on 1st, 7th, 14th, and 21st day. On 21st day the blood was collected for biochemical estimations by retro orbital puncture. The serum was obtained by centrifuging the blood samples at 3000 rpm for 10 min and they were used for estimation of SGPT, SGOT by using a corresponding kit from Agappe Diagnostics Pvt. Ltd and the intensity of the coloured complex formed after treating with these reagents were estimated in semi-auto analyzer.

Biochemical parameters such as

- Fasting blood glucose
- Serum glutamic pyruvate transaminase (SGPT)
- Serum glutamic oxaloacetate transaminase (SGOT)
- Body weight

Estimation of SGPT (UV- Kinetic method)

Principle

SGPT catalyses the transfer of amino group from L-Alanine to 2-oxoglutarate with the formation of pyruvate and L-glutamate. The pyruvate so formed is allowed to react with NADH to produce L-lactate. The rate of this reaction is monitored by an indicator reaction coupled with LDL in the presence of NADH (nicotinamide adenine dinucleotide). The
oxidation of NADH in this reaction was measured as a decreasing in the absorbance of NADH at 340 nm, which is proportional to SGPT activity.

Procedure

<table>
<thead>
<tr>
<th>Pipette</th>
<th>Sample (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working reagent</td>
<td>1000</td>
</tr>
<tr>
<td>Sample</td>
<td>100</td>
</tr>
</tbody>
</table>

Mix well and incubate at 37°C for 5 min. Aspirate blank followed by standard and tests the measure the absorbance of the sample and standard against blank at 340 nm using Semi-auto analyzer.

Formula

\[
\text{SGPT (U/L) } = \text{Absorbance } \times 1746 \text{ (Factor)}
\]

Estimation of SGOT (UV-kinetic method)

Principle

SGOT catalyses the transfer of amino group from L-Aspartate to 2-oxo glutarate with the formation of oxaloacetate and L-glutamate. The rate of this reaction is monitored by an indicator reaction coupled with malate dehydrogenase (MDL) in which the oxaloacetate formed is converted to malate ion in the presence of NADH (nicotinamide adenine dinucleotide). The oxidation of NADH in this reaction was measured as a decreasing in the absorbance of NADH at 340 nm, which is proportional to SGOT activity.

Procedure

<table>
<thead>
<tr>
<th>Pipette</th>
<th>Sample (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working reagent</td>
<td>1000</td>
</tr>
<tr>
<td>Sample</td>
<td>100</td>
</tr>
</tbody>
</table>

Mix well and incubate at 37°C for 5 min. Aspirate blank followed by standard and tests the measure the absorbance of the sample and standard against blank at 340 nm using Semi-auto analyzer.

Formula

\[
\text{SGOT (U/L) } = \text{Absorbance } \times 1746 \text{ (Factor)}
\]

RESULTS

Percentage yield

Percentage yield of crude ethanolic extract of *Citrus maxima* stem bark using Hot percolation method was found to be 10.2% and Brownish black colour.

Preliminary phytochemical screening of extract

The ethanolic extract of *Citrus maxima* stem bark was subjected to screening for its phytochemical constituents and ethanolic extracts showed the presence of flavonoids, tannins, alkaloids, glycosides and carbohydrates.

Acute toxicity studies of ethanolic extract

The acute toxicity of ethanolic extracts of *Citrus maxima* was carried out as per OECD-425 guidelines for safe dose administration to animals. The results of acute toxicity study revealed that LD$_{50}$ values of extract were high and apparently showed the safety of the extract. The treatment of rats with ethanolic extract of *Citrus maxima* did not change the autonomic or behavioral responses among rats. The zero percent mortality was found at the doses of 2000 mg/kg. Based on the results, 1/10th and 1/5th of 2000 mg/kg was taken as low dose (200 mg/kg) and high dose (400 mg/kg) as therapeutic dose of the present investigation.

Anti-diabetic Activity

Alloxan induced anti-diabetic activity

Fasting blood glucose (FBG) level was within the range of 80-95 mg/dl in all the groups prior to diabetic induction. Treatment with Alloxan in normal saline (100 mg/kg, i.p) had increased the FBG level above 250 mg/dl after 42 h. Treatment with ethanolic extract of *citrus maxima* stem bark significantly normalized the elevated blood glucose level as shown in Table 1.

Streptozotocin induced anti-diabetic activity

Fasting blood glucose (FBG) level was within the range of 80-90 mg/dl in all the groups prior to STZ administration. Treatment with STZ in normal saline (65 mg/kg, i.p) had increased the FBG level above 200 mg/dl after 72hrs. Treatment with ethanolic extract of *citrus maxima* stem bark significantly normalized the elevated blood glucose level as shown in Table 2.
Oral glucose tolerance test (OGTT) in normal rats
Treatment with Ethanolic extract of *Citrus maxima* stem bark showed significant reduction in the blood glucose level after glucose loading as compared to normal control as shown in Table 3.

Effect on body weight
Alloxan induced diabetic rats
Body weight of animals in all groups was recorded at 0, 7th, 15th and 21st day. Highest change (decrease) in body weight during study period was found to be in diabetic control group. Glibenclamide and *Citrus maxima* stem bark extract treated groups showed increase in body weight as compared to diabetic control group. (Table 4)

STZ induced diabetic rats
Body weight of animals in all groups was recorded at 0, 7th, 15th and 21st day. Highest change (decrease) in body weight during study period was found to be in diabetic control group. Glibenclamide and *Citrus maxima* stem bark extract treated groups showed increase in body weight as compared to diabetic control group. (Table 5)

Serum biomarkers
After 21 days of experiment, serum biomarkers such as SGPT and SGOT level were significantly elevated in diabetic control group. In animals treated with Glibenclamide and *Citrus maxima* stem bark extract, SGPT and SGOT levels were decreased significantly (*p* < 0.001, *p* < 0.01 respectively) as compared to the diabetic control. (Table 6)

DISCUSSION
Diabetes mellitus is chronic disorder caused by partial or complete insulin deficiency. This causes abnormal metabolism of glucose, protein and lipid leads to acute and chronic complications. The major complications are the premature and extensive atherosclerosis involving renal, peripheral and cardiovascular vessels. Disorder is more likely to increase risk for coronary heart disease because of alteration in serum lipid profile.

In present study, treatment with *Citrus maxima* stem bark ethanolic extract in alloxan and streptozocin treated rats produced significant decrease in blood glucose level. The hypoglycemic effect may be due to increased secretion of insulin from β cells of pancreas i.e. pancreaticotropic action or due to regeneration of pancreatic cells that were partially destroyed by alloxan.

The preliminary phytochemical screening of the plant showed the presence of flavonoids and tannins in ethanolic extract. It is well known that flavonoids and tannins possesses antidiabetic property. Alloxan, a β cytotoxic induces chemical diabetes in wide variety of animal species by damaging the insulin secreting cells of pancreas. Literature survey indicates that alloxan treated rats are hyperglycemic. Alloxan (100 mg/kg) produces partial destruction of pancreatic β cells and these animals may have surviving β cells and regeneration of β cells is possible.

STZ has been shown to produce free radicals in the body, which specifically cut DNA chains in the pancreatic beta cells, resulting in disorder of the function of the pancreatic beta cells and at a later phase, destruction of the beta cells by necrosis. Streptozotocin injection induces over-production (excessive hepatic glycolysis and gluconeogenesis) and decreased utilization of glucose by the tissues are the fundamental basis of hyperglycemia in diabetes mellitus.

Destruction of beta cells results in elevation of blood glucose level. Alloxan and STZ induced diabetic group that was treated with low dose (200mg/kg) and high dose (400mg/kg) of *Citrus maxima* ethanolic stem bark extract and also the Glibenclamide treated group showed significant decrease in Alloxan and STZ induced elevation in plasma glucose. The non diabetic group treated with high dose (400mg/kg) of *Citrus maxima* ethanolic stem bark extract showed significant decrease in plasma glucose when compared with vehicle control.

The loss of body weight and increase in food and fluid intake of diabetic rats as compared to that of control rats could be due to emaciation of skeletal muscle, dehydration and catabolism of fats and proteins. Decrease in body weight was found in diabetic control group. Data of present study shows that treatment with *Citrus maxima* stem bark extract prevents loss of body weight in diabetic condition significantly, which may be due to its protective effect in controlling muscle wasting i.e. reversal of gluconeogenesis and may also be due to the improvement in insulin secretion and glycaemic control.

The diabetes complication such as increased gluconeogenesis and ketogenesis may be due to elevated transaminase activity. Elevation of biomarker enzymes such as SGPT and SGOT was observed in diabetic rats in present study, which indicates the hepatic damage. Elevated enzyme activity restored by ECMS treatment with both 200mg/kg and 400mg/kg, shows
dose dependent activity which signifies anti-diabetic activity. The administration of *Citrus maxima* stem bark extract to the diabetic animals decreased the elevated serum biomarkers levels. Earlier studies indicated that herbal drugs can reduce the increased biomarker level in diabetic condition and the mechanism is suggested is due to the antioxidant potential.

CONCLUSION
Many herbal medicines have been recommended for the treatment of diabetes. Phytochemical investigations of these herbal drugs have shown antidiabetic activity which reveals the presence of flavonoids, sterols, polyphenols and tannins as bioactive principles. Our data suggest that the 80% aqueous alcoholic extract of stem bark of *Citrus maxima* possess potential antidiabetic activity as it lowers serum glucose level and moderately increases glucose tolerance. Intraperitoneal administration of Alloxan and STZ produced cardinal symptoms such as hyperglycemia, loss of body weight. Also impaired lipid and glucose metabolism and altered kidney function, increase in serum biomarkers (liver damage).

A significant decrease in blood glucose level was observed with the two selected doses, 200mg/kg and 400mg/kg of *Citrus maxima* stem bark extract hence can be used in diabetes. Antidiabetic activity of *Citrus maxima* at 400 mg/kg was found to be more effective than 200 mg/kg. In the present study, the administration of ethanolic extract of stem bark of *Citrus maxima* shows a significant antidiabetic effects in Alloxan and STZ induced diabetic rats. However Further studies are needed to isolate the active constituents of *Citrus maxima* and also to evaluate the exact mechanism of action for the antidiabetic activity.

ACKNOWLEDGEMENTS
The authors are thankful to Management of Srinivas College of Pharmacy, Mangalore for providing the facilities to carry out the present work.

Table 1: Serum glucose in alloxan induced diabetic rats

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Blood glucose level (mg/dl)</th>
<th>Before diabetic induction</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td></td>
<td></td>
<td>85.12±2.38</td>
<td>84.85±1.86</td>
<td>87.05±0.92</td>
<td>87.55±1.66</td>
</tr>
<tr>
<td>Diabetic control</td>
<td></td>
<td></td>
<td>87.65±4.36</td>
<td>250.54±3.62</td>
<td>254.62±4.36#</td>
<td>257.09±5.65#</td>
</tr>
<tr>
<td>Standard Glibenclamide (5mg/kg)</td>
<td></td>
<td></td>
<td>88.31±2.32</td>
<td>261.16±2.65</td>
<td>201.01±6.4***</td>
<td>160.87±2.98***</td>
</tr>
<tr>
<td>Low dose C.maxima (200mg/kg)</td>
<td></td>
<td></td>
<td>86.16±4.78</td>
<td>255.33±7.65</td>
<td>235.67±5.23*</td>
<td>195.74±6.29**</td>
</tr>
<tr>
<td>High dose C.maxima (400mg/kg)</td>
<td></td>
<td></td>
<td>88.13±3.85</td>
<td>244.72±3.61</td>
<td>196.82±6.54**</td>
<td>164.36±9.3***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n=6) one way ANOVA followed by Dunette’s t test. Where, # represents the comparison, * represents significant at p<0.05, ** represents highly significant at p< 0.01 and *** represents very significant at p<0.001.

Table 2: Serum glucose in STZ induced diabetic rats

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Blood glucose level (mg/dl)</th>
<th>Before diabetic induction</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td></td>
<td></td>
<td>87.54±1.38</td>
<td>90.88±1.86</td>
<td>89.92±1.92</td>
<td>89.37±2.56</td>
</tr>
<tr>
<td>Diabetic control</td>
<td></td>
<td></td>
<td>90.01±4.58</td>
<td>288.41±2.26</td>
<td>293.11±5.36#</td>
<td>310.87±4.56#</td>
</tr>
<tr>
<td>Standard Glibenclamide (5mg/kg)</td>
<td></td>
<td></td>
<td>89.44±1.132</td>
<td>280.87±5.26</td>
<td>241.78±6.54***</td>
<td>170.59±4.89***</td>
</tr>
<tr>
<td>Low dose C.maxima (200mg/kg)</td>
<td></td>
<td></td>
<td>88.22±4.67</td>
<td>300.08±7.56</td>
<td>280.23±4.32*</td>
<td>225.25±5.92**</td>
</tr>
<tr>
<td>High dose C.maxima (400mg/kg)</td>
<td></td>
<td></td>
<td>87.35±4.45</td>
<td>254.98±5.19</td>
<td>225.13±4.13**</td>
<td>187.21±3.15***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n=6) one way ANOVA followed by Dunette’s t test. Where, # represents the comparison, * represents significant at p<0.05, ** represents highly significant at p< 0.01 and *** represents very significant at p<0.001.
Table 3: Blood glucose levels on OGTT in normal rats

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Blood glucose level (mg/dl)</th>
<th>0 min</th>
<th>30 min</th>
<th>60 min</th>
<th>120 min</th>
<th>240 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td>84.80±1.38</td>
<td>145.87±1.86</td>
<td>125.64±2.92</td>
<td>110.77±2.66</td>
<td>87.48±4.12</td>
</tr>
<tr>
<td>Standard Glibenclamide (5mg/kg)</td>
<td></td>
<td>86.76±2.58</td>
<td>120.98±2.26**</td>
<td>95.12±4.67**</td>
<td>88.54±5.46**</td>
<td>81.34±4.32**</td>
</tr>
<tr>
<td>Low dose C.maxima (200mg/kg)</td>
<td></td>
<td>89.98±1.12</td>
<td>115.65±2.61*</td>
<td>107.25±5.48*</td>
<td>100.84±4.65*</td>
<td>92.52±3.55*</td>
</tr>
<tr>
<td>High dose C.maxima (400mg/kg)</td>
<td></td>
<td>88.96±4.87</td>
<td>118.25±5.57**</td>
<td>105.25±2.54**</td>
<td>97.14±3.82**</td>
<td>89.71±2.65**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n=6) one way ANOVA followed by Dunette’s t test. Where, # represents the comparison, * represents significant at p<0.05, ** represents highly significant at p<0.01.

Table 4: Body weight in alloxan induced diabetic rats

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>BODY WEIGHT (Grams)</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Control</td>
<td></td>
<td>201.50 ± 2.75</td>
<td>203.10 ± 2.78</td>
<td>205.60 ± 2.80</td>
<td>209.90 ± 2.86</td>
</tr>
<tr>
<td>Diabetic Control</td>
<td></td>
<td>203.50 ± 2.89</td>
<td>172.00 ± 2.26*</td>
<td>158.52 ± 2.51*</td>
<td>145.67 ± 1.72#</td>
</tr>
<tr>
<td>Standard Glibenclamide (5mg/kg)</td>
<td></td>
<td>206.50 ± 2.84</td>
<td>203.00 ± 2.64***</td>
<td>201.50 ± 2.02***</td>
<td>205.45 ± 1.90**</td>
</tr>
<tr>
<td>Low dose C.maxima (200mg/kg)</td>
<td></td>
<td>205.50 ± 2.39</td>
<td>189.00 ± 2.15*</td>
<td>184.34 ± 1.89*</td>
<td>187.50 ± 1.24*</td>
</tr>
<tr>
<td>High dose C.maxima (400mg/kg)</td>
<td></td>
<td>206.55 ± 2.45</td>
<td>200.00 ± 2.07**</td>
<td>202.00 ± 1.69**</td>
<td>203.00 ± 1.50**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n=6) one way ANOVA followed by Dunette’s t test. Where, # represents the comparison, * represents significant at p<0.05, ** represents highly significant at p<0.01 and *** represents very significant at p<0.001.

Table 5: Body weight in STZ induced diabetic rats

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>BODY WEIGHT (Grams)</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Control</td>
<td></td>
<td>185.33 ± 2.53</td>
<td>192.4 ± 4.31</td>
<td>202.00 ± 6.84</td>
<td>210.50 ± 9.79</td>
</tr>
<tr>
<td>Diabetic Control</td>
<td></td>
<td>190.67 ± 3.72</td>
<td>175 ±3.41</td>
<td>163.50 ±0.99#</td>
<td>145 ±1.59#</td>
</tr>
<tr>
<td>Standard Glibenclamide (5mg/kg)</td>
<td></td>
<td>205.50 ± 1.84</td>
<td>196.00 ± 3.64***</td>
<td>195.50 ± 4.02***</td>
<td>200.00 ± 3.90***</td>
</tr>
<tr>
<td>Low dose C.maxima (200mg/kg)</td>
<td></td>
<td>190.83 ± 1.30</td>
<td>177 ±2.90*</td>
<td>179.50 ±4.22*</td>
<td>181.67 ±3.46**</td>
</tr>
<tr>
<td>High dose C.maxima (400mg/kg)</td>
<td></td>
<td>201.50 ± 6.45</td>
<td>186.50 ± 4.07**</td>
<td>190.10 ± 3.69**</td>
<td>195.25 ± 2.50***</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n=6) one way ANOVA followed by Dunette’s t test. Where, # represents the comparison, * represents significant at p<0.05, ** represents highly significant at p<0.01 and *** represents very significant at p<0.001.

Table 6: SGPT and SGOT levels in diabetic rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Alloxan</th>
<th>STZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGPT</td>
<td>SGOT</td>
</tr>
<tr>
<td>Normal control</td>
<td>55.12 ±1.28</td>
<td>56.98±1.45</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>101.43±1.95#</td>
<td>112.48±1.65#</td>
</tr>
<tr>
<td>Standard Glibenclamide</td>
<td>70.78±1.65***</td>
<td>68.59±2.25***</td>
</tr>
<tr>
<td>Low dose C.maxima (200mg/kg)</td>
<td>98.45±2.65*</td>
<td>95.34±2.85*</td>
</tr>
<tr>
<td>High dose C.maxima 400mg</td>
<td>85.46±2.47**</td>
<td>77.18±2.39**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n=6 except in control) one way ANOVA followed by Dunette’s t test. Where, # represents the comparison, * represents significant at p<0.05, ** represents highly significant at p<0.01, *** represents very significant at p<0.001.
REFERENCES

